Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Fangfang Jian, ${ }^{\text {a }}{ }^{*}$ Zhengshuai
 Bai, ${ }^{\text {a }}$ Hailian Xiao ${ }^{\text {a }}$ and Kai Li ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ New Materials and Functions, Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and ${ }^{\text {b }}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

Correspondence e-mail: ffj2003@163169.net

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.119$
Data-to-parameter ratio $=18.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Phenyl-1-(propan-2-ylidene)thiosemicarbazide

The title compound, $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{~S}$, was prepared by the reaction of acetone with hydrazine and phenyl isothiocyanate. The molecular structure and crystal packing are stabilized by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.

Comment

There is considerable current interest in the coordination chemistry of transition metals with the Schiff base family of ligands (Kovacic, 1967). In most cases, it was found that chelation of the bases with salts of transition metals occurred readily, whereas those Schiff bases which are prepared from ortho-hydroxy-substituted aldehydes readily form chelates similar to the type obtained from 8-hydroxyquinoline and its derivatives. In our study of these ligands, we synthesized the title compound, (I), and present its structure (Fig. 1).

(I)

The relatively short $\mathrm{S} 1-\mathrm{C} 7$ bond length (Table 1) indicates its double-bond character. Atoms S1/C7/N1/N2/N3 and C10/ $\mathrm{C} 9 / \mathrm{C} 8 / \mathrm{N} 2 / \mathrm{N} 3$ define the mean planes $p 1$ and $p 2$, respectively; the dihedral angle between them is $13.6(1)^{\circ}$. The dihedral angles formed by the plane of the phenyl ring with $p 1$ and $p 2$ are 38.3 (2) and $39.6(2)^{\circ}$, respectively. The molecular structure of (I) and the crystal packing are stabilized by intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen

Figure 1
View of (I), showing 30\% probability displacement ellipsoids and the atom-numbering scheme.

Received 10 January 2005
Accepted 7 February 2005
Online 12 February 2005
bonds (Table 2). The relatively short distance of 3.733 (2) \AA between atom C 9 and the centroid (Cg) of the phenyl ring at $(1+x, y, z)$ may indicate the presence of a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction (H9C $\cdots C g=2.79 \AA$ and C9-H9C $\cdots C g=166^{\circ}$).

Experimental

The title compound was prepared by the reaction of acetone (0.02 mol) with hydrazine (0.02 mol) and phenyl isothiocyanate (0.02 mol). Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from dimethyl sulfoxide solution at room temperature.

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{~S}$
$M_{r}=207.29$
Monoclinic, $P 2_{1} / c$
$a=9.0660(18) \AA$
$b=10.283(2) \AA$
$c=11.889(2) \AA$
$\beta=99.07(3)^{\circ}$
$V=1094.5(4) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4

diffractometer
ω scans
Absorption correction: none
3104 measured reflections
2352 independent reflections
1937 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.119$
$S=1.04$
2352 reflections
128 parameters
H -atom parameters constrained
$D_{x}=1.258 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=4-14^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, yellow
$0.35 \times 0.25 \times 0.20 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=27.0^{\circ} \\
& h=-1 \rightarrow 10 \\
& k=-1 \rightarrow 12 \\
& l=-14 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0642 P)^{2}\right. \\
& +0.3495 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.28 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.035 \text { (4) }
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{S} 1-\mathrm{C} 7$	$1.6816(18)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.359(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.337(2)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.385(2)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.420(2)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.279(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{~N} 3$	0.86	2.13	$2.571(2)$	111
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.86	2.68	$3.4713(16)$	154

Symmetry code: (i) $-x,-y,-z$.
H atoms were positioned geometrically and allowed to ride on their attached atoms, with $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ distances of 0.86 and $0.93-0.96 \AA$, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}$ of the parent atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (No. Y2002B06).

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gabe, E. J., Le Page, Y., Charland, J. P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Kovacic J. E. (1967). Spectrochim. Acta A, 23, 183-186.
Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

